_CORE
AI & Agentic Systems Core Information Systems Cloud & Platform Engineering Data Platform & Integration Security & Compliance QA, Testing & Observability IoT, Automation & Robotics Mobile & Digital Banking & Finance Insurance Public Administration Defense & Security Healthcare Energy & Utilities Telco & Media Manufacturing Logistics & E-commerce Retail & Loyalty
References Technologies Blog Know-how Tools
About Collaboration Careers
CS EN
Let's talk

Analytics engineering — role mezi daty a business

05. 02. 2020 1 min read intermediate

Analytics engineering buduje spolehlivé datové modely, které umožňují self-serve analytiku. Most mezi surovými daty a business insights.

Co dělá analytics engineer

Transformuje surová data na business-ready modely.

Odpovědnosti

  • Data modeling — star schema, OBT
  • dbt transformace — SQL modely
  • Data quality — monitoring
  • Dokumentace — slovníky, lineage
  • Metriky — KPI jako kód

Semantic layer

# dbt Semantic Layer
semantic_models:
  - name: orders
    model: ref('fct_orders')
    measures:
      - name: revenue
        agg: sum
        expr: total_czk
metrics:
  - name: average_order_value
    type: derived
    type_params:
      expr: revenue / order_count

Stack

  • Transformace: dbt
  • Warehouse: Snowflake, BigQuery, DuckDB
  • BI: Metabase, Superset, Looker

Summary

Analytics engineering je most mezi daty a business. dbt a semantic layer tvoří základ self-serve analytiky.

analytics engineeringdbtdata modelingself-serve
Share:

CORE SYSTEMS tým

Stavíme core systémy a AI agenty, které drží provoz. 15 let zkušeností s enterprise IT.