_CORE
AI & Agentic Systems Core Information Systems Cloud & Platform Engineering Data Platform & Integration Security & Compliance QA, Testing & Observability IoT, Automation & Robotics Mobile & Digital Banking & Finance Insurance Public Administration Defense & Security Healthcare Energy & Utilities Telco & Media Manufacturing Logistics & E-commerce Retail & Loyalty
References Technologies Blog Know-how Tools
About Collaboration Careers
CS EN
Let's talk

AI Project Checklist

16. 07. 2025 1 min read intermediate

An AI project is more than training a model. Here’s what you can’t skip.

Data

  • ☐ Data quality verified
  • ☐ Bias in data analyzed
  • ☐ Train/validation/test split
  • ☐ Data versioning (DVC)
  • ☐ PII in data handled

Model

  • ☐ Baseline model (even simple)
  • ☐ Experiment tracking (MLflow, W&B)
  • ☐ Hyperparameter tuning
  • ☐ Model evaluation metrics defined
  • ☐ A/B test plan

Deployment

  • ☐ Model serving infrastructure
  • ☐ Model versioning
  • ☐ Canary deployment
  • ☐ Rollback mechanism
  • ☐ Latency and throughput tested

Monitoring

  • ☐ Data drift detection
  • ☐ Model performance monitoring
  • ☐ Prediction logging
  • ☐ Alerting on degradation
  • ☐ Retraining pipeline

Ethics & Compliance

  • ☐ Fairness metrics
  • ☐ Explainability (SHAP, LIME)
  • ☐ User consent for AI decisions
  • ☐ Human-in-the-loop for critical decisions
  • ☐ AI Act compliance (EU)

Reality

87% of ML projects never make it to production. Checklists help. But the key is a clear business problem.

aimlproject
Share:

CORE SYSTEMS tým

Stavíme core systémy a AI agenty, které drží provoz. 15 let zkušeností s enterprise IT.