_CORE
AI & Agentic Systems Core Information Systems Cloud & Platform Engineering Data Platform & Integration Security & Compliance QA, Testing & Observability IoT, Automation & Robotics Mobile & Digital Banking & Finance Insurance Public Administration Defense & Security Healthcare Energy & Utilities Telco & Media Manufacturing Logistics & E-commerce Retail & Loyalty
References Technologies Blog Know-how Tools
About Collaboration Careers
CS EN
Let's talk

Vector Database Overview

11. 05. 2025 1 min read intermediate

Key infrastructure for AI, RAG and semantic search.

Principle

Data → embedding model → vector → storage. Query → embedding → nearest neighbor → results.

Algorithms

  • HNSW — most popular
  • IVF — partitioning
  • Flat — brute force

Databases

  • Pinecone — managed
  • ChromaDB — OSS embedded
  • Weaviate — hybrid search
  • Qdrant — Rust, performance
  • pgvector — PG extension

Use cases: - RAG - Semantic search - Recommendations - Image similarity

Vector DB for AI

Essential for RAG and semantic search.

vector dbaiembeddings
Share:

CORE SYSTEMS tým

Stavíme core systémy a AI agenty, které drží provoz. 15 let zkušeností s enterprise IT.